MoCU Repository

An infinite-dimensional subspace of a non-normable and separable frechet space

Show simple item record

dc.contributor.author Aloyce, M.
dc.contributor.author Kumar, S.
dc.contributor.author Mpimbo, M.
dc.date.accessioned 2022-03-10T06:22:19Z
dc.date.available 2022-03-10T06:22:19Z
dc.date.issued 2020
dc.identifier.issn 2090-729X
dc.identifier.uri http://repository.mocu.ac.tz/xmlui/handle/123456789/271
dc.description Research Article en_US
dc.description.abstract In this paper, we proved that if F is a non-normable and separable Fr´echet space, then there exists an infinite-dimensional subspace A ⊂ L(F) such that any non-zero operator T ∈ A is hypercyclic. We considered the existing partial solutions due to Bernal-Gonz´alez [15] and B`es and Conejero [9] to develop our results. An illustrative example is also provided. en_US
dc.language.iso en en_US
dc.publisher Electronic Journal of Mathematical Analysis and Applications en_US
dc.relation.ispartofseries Vol. 8;No. 2
dc.subject Economic Statistics en_US
dc.title An infinite-dimensional subspace of a non-normable and separable frechet space en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search MoCU IR


Browse

My Account