dc.contributor.author |
Aloyce, M. |
|
dc.contributor.author |
Kumar, S. |
|
dc.contributor.author |
Mpimbo, M. |
|
dc.date.accessioned |
2022-03-10T06:22:19Z |
|
dc.date.available |
2022-03-10T06:22:19Z |
|
dc.date.issued |
2020 |
|
dc.identifier.issn |
2090-729X |
|
dc.identifier.uri |
http://repository.mocu.ac.tz/xmlui/handle/123456789/271 |
|
dc.description |
Research Article |
en_US |
dc.description.abstract |
In this paper, we proved that if F is a non-normable and separable
Fr´echet space, then there exists an infinite-dimensional subspace A ⊂ L(F)
such that any non-zero operator T ∈ A is hypercyclic. We considered the
existing partial solutions due to Bernal-Gonz´alez [15] and B`es and Conejero
[9] to develop our results. An illustrative example is also provided. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Electronic Journal of Mathematical Analysis and Applications |
en_US |
dc.relation.ispartofseries |
Vol. 8;No. 2 |
|
dc.subject |
Economic
Statistics |
en_US |
dc.title |
An infinite-dimensional subspace of a non-normable and separable frechet space |
en_US |
dc.type |
Article |
en_US |