| dc.contributor.author | Aloyce, M. | |
| dc.contributor.author | Kumar, S. | |
| dc.contributor.author | Mpimbo, M. | |
| dc.date.accessioned | 2022-03-10T06:22:19Z | |
| dc.date.available | 2022-03-10T06:22:19Z | |
| dc.date.issued | 2020 | |
| dc.identifier.issn | 2090-729X | |
| dc.identifier.uri | http://repository.mocu.ac.tz/xmlui/handle/123456789/271 | |
| dc.description | Research Article | en_US |
| dc.description.abstract | In this paper, we proved that if F is a non-normable and separable Fr´echet space, then there exists an infinite-dimensional subspace A ⊂ L(F) such that any non-zero operator T ∈ A is hypercyclic. We considered the existing partial solutions due to Bernal-Gonz´alez [15] and B`es and Conejero [9] to develop our results. An illustrative example is also provided. | en_US |
| dc.language.iso | en | en_US |
| dc.publisher | Electronic Journal of Mathematical Analysis and Applications | en_US |
| dc.relation.ispartofseries | Vol. 8;No. 2 | |
| dc.subject | Economic Statistics | en_US |
| dc.title | An infinite-dimensional subspace of a non-normable and separable frechet space | en_US |
| dc.type | Article | en_US |