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Abstract: This study applied time series analysis to examine land use/land cover (LULC) change and distribution in Usangu 

watershed and multinomial logistic regression in the GIS environment to model the influence of the related driving factors. 

Historical land use/cover data of the watershed were extracted from the 2000, 2006 and 2013 Landsat images using GIS and 

remote sensing data processing and analysis techniques. Data was analyzed using ArcMap 10.1, ERDAS Imagine, SPSS and 

IDRISI Selva software. Eight factors likely to influence LULC change and LULC distribution were assessed. These include 

elevation, slope, distance from roads, distance from rivers networks, population density, Normalized Vegetation Index (NDVI), 

annual rainfall and soil types. Results show that LULC changes are mainly influenced by variations in annual rainfall, population 

density and distance from road networks. LULC distribution is determined mainly by terrain and edaphic factors namely elevation, 

slope and soil types. NDVI does not influence LULC change nor determine the LULC distribution, but can be used to show 

concentration of LULC types on a landscape. Combination of GIS, remote sensing and statistical analysis capabilities are 

powerful tools for assessing and model processes of land use change and their underlying causes in terms of time and space. It is 

concluded that ingeniously integration of remote sensing, GIS application combined with multi-source spatial data analysis give 

great possibility of quantifying and explaining the temporal and spatial LULC changes and distribution in a given watershed. 

Keywords: LandUse/Cover, Change and Distribution, GIS, Remote Sensing, Multinomial Logit Regression, Usangu 

 

1. Introduction 

The transformation of land use and land cover is driven by 

a range of different factors and mechanisms. While climate, 

technology and economics are key determinants of land-use 

change at different spatial and temporal scales 

[1],geomorphology and edaphic factors determine the LULC 

distribution on the landscape [2] . Existence and changes of 

LULC in a given time and location occur as a result of many 

factors. These factors include political, economic, cultural, 

technological, and natural driving factors, including factors 

that derive from the spatial configuration (also referred to as 

natural configuration). Natural driving factors include site 

factors (spatial configuration, topography, and soil conditions) 

as well as natural disturbances such as drought, wildfires and 

floods which induce long term global change [3]. The LULC 

change distribution varies in space and time. This is because 

physical and social characteristics of communities vary in 

space and time, so do land-use choices, resulting in a spatial 

pattern of land-use types [4]. LULC change driving factors 

have been defined as the underlying elements that trigger 

landscape changes [5]. These factors influence the 

trajectories of landscape development [6]. The study of 

driving factors of landscape change has a long tradition in 

geography and landscape research [7], and is gaining 

increasing attention in landscape-change research. Indeed, 

driving factors have been identified as one of the six core 

concepts for the modelling of land-use change [8]. 

The driving factors form a complex system of dependencies 

and interactions and affect a whole range of temporal and 

spatial levels. Time series analysis of land cover changes and 

the identification of the driving factors responsible for these 

changes are neededindesigning appropriate management 

techniques  for natural resources and also for projecting future 

land cover trajectories [9]. Land cover change information is 

needed regarding what and how changes occur, where and 

when they occur, the rates at which they occur, and the social 

and physical factors that drive those changes [10]. Good 
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understanding of biological, social and physical factors which 

regulate and shape landuse/cover in a certain landscape is a 

pre-requisite towards proper eco-environment management. 

Understanding of land use change dynamics is foremost 

concerned with quantities of change [11]. 

Several LULC change related studies [12-14] have been 

carried out in Usangu catchment. However, these studies did 

not include spatial analyses of the driving factors of LULC 

change. Indeed, many studies on LULC analysis is Tanzania 

have focused only on quantifying the amount of the change 

and qualitative description of the factors causing the changes 

observed. To a less extent spatial-temporal and statistical 

analysis of the driving factors of LULC changes have been 

studied. Spatial analysis is instrumental in land use planning 

and informed decision making. In addition, spatial LULC 

analysis with respect to parameters like slope, elevation, 

annual rainfall amounts look into more interwoven and 

hidden factor-factor and factor LULC change relationships. 

The choice of factors for analysis in this study (i.e. rainfall 

amounts and distribution, population density) was guided by 

facts provided by the districts’ officers in Usangu catchment 

as well as the common factors discussed in literature [15, 

16].The contributions of each driving factor on the observed 

LULC change need to be identified so as to enable informed 

decisions while managing landscapes. The objective of this 

study is to assess changes and distributions of LULC in 

Usangu Watershed landscapes from 2000-2013. The study 

demonstrates applications of GIS in integrating data from 

various sources and use of multinomial regression approach 

in accounting for LULC changes and distribution. 

2. Material and Methods 

2.1. Study Area 

Usangu sub-catchment is found in the upper part of Rufiji 

Basin in Tanzania. It lies between latitudes 7°45′ and 9°25′ 

South, and longitudes 33°40′ and 35°40′ East, covering an area 

of approximately 20,800 km
2
. About 4,840 km

2
 (23%) of the 

Usangu sub-catchment is in the alluvial plains below 1100 m 

above the mean sea level (amsl). The remaining 77% of the 

catchment area lies in the ‘high catchment’, which ranges in 

altitude from about 1,100 to over 2,000 m amsl. The catchment 

is surrounded by the Kipengere, Poroto and Chunya mountains 

with elevations up to 3000m amsl. The Usangu catchment is 

vital to Tanzania for its irrigated rice production as well as for 

its livelihoods options for smallholder farmers and agro-

pastoralists [17]. 

Usangu catchment is characterized by uni-modal rainfall 

which starts in November/December and ends in April/May 

[18]. The highlands surrounding the wetlands are among the 

areas with the heaviest rainfall in Tanzania, from where the 

bulk of the flow to Great Ruaha River is generated [19]. The 

highlands receive precipitation of about 1600 mm/year, while 

the plains receive around 500-700 mm/year [17]. Major 

tributaries to the Great Ruaha River with confluences in the 

Usangu catchment are Mbarali, Kimani, Chimala and 

Ndembera River. 

2.2. Data Types and Sources 

Historical land use/cover data of the watershed were 

extracted from the 2000, 2006 and 2013 Landsat images. 

Satellite imagery for land use/cover analysis was acquired 

through direct download from the U.S. Geological Survey 

website (http:\\glovis.usgs.gov). Usangu Catchment extends 

over three different Landsat paths and rows. The dates of the 

satellite imagery used in the study and their associated path 

and rows are shown in Table 1. The spatial resolution of these 

satellite images 30 meters. 

Table 1.Characteristics of satellite imageries used. 

Year path168/row066 path169/row065 path169/row066 

2000 2000-05-11 2000-07-21 2000-07-21 

2006 2006-06-05 2006-05-27 2006-05-27 

2013 2013-06-08 2013-05-14 2013-05-14 

The images were purposely selected from the US 

Geological Survey website, based on the growing calendar in 

such a way that major crops that are cultivated in the study 

area were still in the field. Other data used included digital 

elevation model, population density data, river and roads 

network shapefiles. Population data for 2002 and 2012 were 

downloaded from Tanzania Bureau of Statistics website 

(http://www.nbs.go.tz/). The population density for 2002 was 

then projected for 2006 population estimate.Data for the soil 

types were extracted from version (3.6) of the digitized FAO 

Soil Map of the World 

(http://www.waterbase.org/download_data.html). Soil names 

were coded as “Soil1, Soil2…Soil8” for subsequent analyses. 

Names and descriptions of soils types are presented in Table 

2. Note, the satellite images and soil data were extracted from 

the international sources as earlier mentioned because such 

data could not be obtained from the country’s sources. 

Table 2. Soil types and their description. 

Soil type Code Description 

Leptosols Soil1 Very shallow soils over hard rock or in unconsolidated very gravelly material 

Fluvisols Soil2 Young soils in alluvial deposits 

Cambisols Soil3 Weakly to moderately developed soils 

Andosols Soil4 Young soils formed from volcanic deposits 

Lixisols Soil5 Soils with subsurface accumulation of low activity clays and high base saturation 

Solonetz Soil6 Soils with subsurface clay accumulation, rich in sodium 

Acrisols Soil7 Soils with subsurface accumulation of low activity clays and low base saturation 

Nitisols Soil8 Deep, dark red, brown or yellow clayey soils having a pronounced shiny, nut-shaped structure 
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2.3. Data Processing and Analysis 

Satellite images were pre-processed before classification 

was performed. Layer stacking was performed to combine 

bands and then image edges were trimmed out in ArcMap 

using the Landsat WRS II path and raw shapefiles. Images of 

the same year but from different path and rows were 

radiometrically corrected and then mosaicked in ERDAS 

Imagine 2011 software [20]. Supervised classification was 

performed in ArcMap 10.1[21] whereby the training sites 

were selected based on the ground-truth GNSS(Global 

Satellite Navigation System) coordinates which were 

collected during field reconnaissance. Other ancillary data 

like shapefiles of roads, irrigation project maps, rivers and 

settlements facilitated the selection of classification training 

samples. Each imagery was classified into 9 landuse/cover 

classes as modified from Anderson scheme of landuse/cover 

classification [22]. Landuse/cover classes for this study and 

their details areshown in Table 3. 

Table 3. Land use/land cover classes and their descriptions. 

Class Details 

Grassland (GRA) Tall to short grasses, sometimes bare soils in dry season. 

Wetland (WET) Areas with lands partially covered with water and grasses 

Woodland (WOD) Areas with wood trees but less closed canopy 

Forest (FOR) Areas with closed trees, thick canopy, both natural and planted forests. 

Shrubs (SHR) Short and scatted trees, mainly thorn buses and acacia trees 

Agricultural land (AGR) All land with crops 

Bare land (Rock&Soils) (BAR) Bare soils, rock out crops, quarry areas, sands, eroded soils 

Water (WAT) Rivers, water in wetlands, fish ponds and water in agricultural areas 

Urban (URB) Tarmac and gravel roads, concrete areas, urban and rural settlements 

 

2.4. Land Use/Cover Classification Accuracy Assessment 

The accuracy of image classification was checked using 

the ground truthing GNSS points data as well as other 

reference points which were randomly selected from the 

features of the satellite images. A maximum of 60 points was 

selected for each LULC class. As shown in Table 4, the 

individual accuracy of the LULC types were estimated using 

the producer’s accuracy (omission error) and user’s accuracy 

(commission error). 

Table 4. Classification accuracy (%) for LULC maps for the year 2000, 2006 and 2013. 

 
2000 

 
2006 

 
2013 

 
Class name Producer Accuracy Users Accuracy Producer Accuracy Users Accuracy Producer Accuracy Users Accuracy 

Grassland 95.0 79.2 86.7 71.2 91.7 64.0 

Wetland 83.6 85.0 85.0 85.0 86.7 85.2 

Woodland 85.2 86.7 75.4 86.8 90.0 91.5 

Forest 91.7 98.2 93.3 100.0 90.0 96.4 

Shrubs 86.7 80.0 93.3 78.9 93.3 94.9 

Agric 90.0 81.8 86.7 83.9 90.0 76.1 

Bare land (Rock&Soils) 97.5 92.9 75.0 81.1 66.7 100.0 

Water 81.0 95.9 86.7 98.1 75.0 100.0 

Urban 78.3 94.0 83.3 89.3 81.7 87.5 

The overall classification accuracy (%) are 87.3, 85.4 and85.7 for 2000, 2006 and 2013, respectively while the overall kappa statistics for the same years are 

0.86, 0.84 and 0.86, respectively. 

The producer’s accuracy was computed by dividing the 

number of samples in an individual class identified correctly 

by the respective reference totals while the user’s accuracy 

was computed by dividing the number of samples in an 

individual class identified correctly with the classified totals 

[23, 24]. The overall classification accuracy was derived by 

dividing the total number of correctly classified landuse 

classes by the total number of reference data [23]. Kappa 

statistics, also known as Khat - Coefficient of agreement 

[25]was calculated using the following formula; 

^
1 1

2

1

( )

( )

k k

ii i ii i

k

i ii

N
K

x x x

N x x

+ += =

+ +=

− ×
=

− ×
∑ ∑

∑
                      (1) 

Where k is the number of rows, xiiis the number of 

observations correctly classified for a particular category 

(summarized in the diagonal of the matrix), xi+ and x+i are 

marginal totals for raw and column i associated with the 

category, and N is the total number of observations in the entire 

error matrix. Kappa statistics is a measure of agreement or 

accuracy between remote sensing-derived classification map and 

the reference data. Looking at the 2013 users’ accuracy on bare 

land and water, the scores highlight that having local knowledge 

of the study area has a bearing on the accuracy of the 

classification. Other studies have found the same pattern [26, 27]. 

2.5. Land Use/Change Detection 

IDRISI Selva software[28] was used for land use/cover 
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change detection. This was achieved through cross-tabulation 

of classified images using Change/Time series analysis tool 

(CROSS TAB). Classified images were cross-tabulated in 

pairs, that is 2000/2006 and 2006/2013 classified images. 

The results of cross-tabulation were summarized in a 

spreadsheet whereby the quantity and percentage of change 

of each land cover/use class were calculated. 

2.6. Land Use/Cover Change and Distribution Influencing 

Factors 

Multinomial logistic regression analysis was carried out 

using SPSS Version 17 to determine how the identified land 

use/cover drivers influence the existence of the observed land 

use/cover class in a specific location (spatial distribution) and 

observed LULC change. Classified images contained 

multiple categories of LULC classes, hence necessitated the 

choice of this analysis model [29]. Classified Land use/cover 

of 2000, 2006 and 2013 together with the eight LULC drivers 

were converted into polygons, overlaid and their database file 

was exported into SPSS as Y and X variables for statistical 

analysis. The LULC driving factors considered were graded 

maps of slope, elevation, distance from roads, distance from 

rivers, population density, annual rainfall, Normalized 

Difference Vegetation Index (NDVI) and soil types. The 

analysis outputs were individual logistic regression equations 

for each land use/cover category except for bare land class 

which was a reference category. The individual regression 

coefficients exponents (e
β
) of the independent variables (odds 

ratio) were translated as the magnitude of the probable 

change in LULC due to change in one unit in independent 

variable in the logit model.The resulting logistic regression 

odds ratio values are presented in Table 7, 8 and 9. 

The analysis of the influence of factors related to 

distribution of LULC on the landscape was performed using 

graphical analysis and interpretation of odds values. The 

classified images were cross-tabulated with the driving 

factors maps, and then the graphs of the cross-tabulated 

results were generated. 

3. Results and Discussions 

3.1. LandUse/Cover Classification Accuracy 

The overall classification accuracy of the classification for 

2000, 2006 and 2013 were 87.3, 85.4 and 85.7%, respectively. 

The overall Kappa Statistics for the 2000 imagery was 0.86 

while for 2006 and 2013 was 0.84. The USGS satellite 

imagery classification scheme has set the minimum standard 

for accuracy assessment to be 85% [16, 22]. Generally, the 

results of classification accuracy assessment in this study are 

acceptable. Kappa values greater than 0.80 (i.e. >80%) 

represent strong agreement or accuracy between the 

classification made and the ground reference information 

[25]. Land use/cover type classes in Usangu catchment from 

the year 2000 to 2013 are shown in Fig.s 1 a-c. These figures 

clearly show that land use/cover types are not static over time. 

They change either naturally or under the influence of human 

activities. 

 

 

 

Fig. 1. LULC maps for Usangu Catchment for years (a) 2000 (b) 2006 (c) 

2013. 

Transition matrices in Tables 5 and 6 illustrate the changes 

of land uses in Usangu sub-catchment for the period between 

2000 and 2013. Each row indicates the proportion (%) of the 

original land use that changed into other land uses by the end 

of the period. Diagonal elements are the retention frequencies, 

that is, the lands of a given class that maintains its identity 

with no change to another LULC class. Last but one row in 

Tables 5 and 6 show the amount of gain or loss of each land 
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class (in km
2
) between 2000/2006 and 2006/2013. The 

percentages of the change are shown in the last row of each 

table. Since the main economic activity in the study area is 

agriculture, discussion on changes on agricultural land is 

given due emphasis. 

Table 5. Land use/cover change matrix (km2) from 2000-2006. 

 
    

2000 
      

  
GRA WET WOD FOR SHR AGR BAR WAT URB 2006 Total 

2006 

GRA 2407.0 488.0 436.7 118.7 774.7 918.4 39.4 2.4 155.3 5340.6 

WET 288.2 367.2 22.7 0.1 90.1 507.5 8.7 4.1 35.0 1323.5 

WOD 449.7 58.3 1912.3 426.2 1209.1 378.8 0.7 3.5 28.7 4467.5 

FOR 109.3 5.5 229.2 340.4 165.8 51.5 0.3 0.0 5.4 907.5 

SHR 1196.9 113.6 1351.2 97.2 640.9 683.5 4.5 0.2 45.8 4133.6 

AGR 902.4 274.1 862.0 13.4 646.6 632.7 13.3 1.2 81.7 3427.4 

BAR 415.8 48.8 0.2 0.1 16.9 44.5 14.6 0.2 44.1 585.1 

WAT 1.3 4.0 0.1 0.0 0.3 3.5 0.1 0.6 0.3 10.3 

URB 242.5 52.4 18.1 12.6 105.3 2.6 3.7 0.9 76.4 514.5 

2000 Total 6013.0 1411.8 4832.6 1008.5 3649.6 3223.1 85.4 13.2 472.7 20709.9 

 
Change (km2) -672.4 -88.4 -365.1 -101.0 484.0 204.2 499.8 -2.8 41.8 

 

 
Change (%) -11.2 -6.3 -7.6 -10.0 13.3 6.3 585.5 -21.6 8.8 

 

Note: GRA: Grass land, WET: Wetland, WOD: Woodland, FOR: Forest, SHR: Shrubs, AGR: Agric, BAR: Bare land, WAT: Water, URB: Urban 

Table 6. Land use/cover change matrix (km2) from 2006-2013. 

 
    

2006 
      

  
GRA WET WOD FOR SHR AGR BAR WAT URB 2013 Total 

2013 

GRA 3081.4 328.9 744.8 200.1 1691.9 1184.9 347.6 1.5 351.7 7932.9 

WET 476.9 451.3 75.6 3.7 104.8 254.9 53.4 4.8 42.9 1468.5 

WOD 210.1 40.1 1586.3 119.9 910.3 981.4 1.8 0.4 7.0 3857.4 

FOR 87.4 0.1 299.6 216.5 70.8 9.1 0.0 0.0 7.9 691.5 

SHR 306.4 1.1 759.8 190.4 647.4 88.4 0.1 0.0 17.2 2010.8 

AGR 934.1 470.8 927.2 151.8 602.1 792.3 130.0 3.2 89.1 4100.6 

BAR 45.0 4.2 0.3 0.3 4.8 15.4 19.8 0.0 3.6 93.3 

WAT 1.4 1.6 7.1 0.9 0.8 1.0 0.1 0.3 0.5 13.6 

URB 197.9 25.4 66.6 23.8 100.6 99.9 32.5 0.1 84.6 631.4 

2006 Total 5340.6 1323.5 4467.5 907.5 4133.6 3427.4 585.1 10.3 604.5 20799.9 

 
Change (km2) 2592.3 145.0 -610.1 -216.0 -2122.8 673.2 -491.8 3.2 26.9 

 

 
Change (%) 48.5 11.0 -13.7 -23.8 -51.4 19.6 -84.0 31.4 4.4 

 
 

The total area under agriculture in 2000 was 3223.1km
2
 

and 3427.4km
2
 in 2006. Between 2000 and 2006, agricultural 

land expanded by 204.2km
2
(6.3%). This expansion of 

agricultural land resulted from converting other 

landuse/cover classes into agriculture as follows; Grassland 

(902.4 km
2
), Woodland (862 km

2
), Shrubs (646.6 km

2
) and 

Wetlands (274.1 km
2
). Similarly, between 2006 and 2013 

agriculture land expanded by 19.6%). Major land classes of 

2006 which were converted to agriculture in 2013 are 

Grasslands (934.1 km
2
), Woodlands (927.2 km

2
), Shrubs 

(602 km
2
) and Wetlands (470.8 km

2
). Here, major 

agricultural expansion has taken place in the grassland areas, 

although woodland, shrubs and wetlands conversions are also 

significant. 

Results in Tables 5 and 6 show that forests are being 

converted mainly into woodlands, shrubs and agriculture. On 

the other hand, wetlands are converted mainly to grasslands 

and agriculture both in 2000-2006 and 2006-2013. Looking 

into land uses/covers which have been converted into 

agriculture in 2006 and 2013; it implies that agriculture 

extends to areas with favourable features for crops that are 

cultivated in the study area. Major lands which are being 

converted to urban class are grasslands and shrubs. 

3.2. Determinants of Landuse/Cover Change and 

Distribution 

The multinomial logit regression used in this study involved 

eight LULC change and distribution factors as earlier 

mentioned in Introduction section. The individual regression 

odds ratio values results from analysis are shown in Tables 7, 8 

and 9. 

The magnitude of probability (Odds) of a change of a 

particular LULC to another is indicated by the magnitude of 

the Odds ratio values. The odds ratio represents the change in 

odds of being in one of the categories of outcome when the 

value of a predictor increases by one unit, controlling for other 

factors in the model [30]. The Odds ratio value less than 1 in 

this table shows how less likely the change in LULC occurs as 

a result in the additional 1 unit of the independent variable. 

Odds ratio value greater than 1 indicates the number of times 

the change is more likely to occur compared to the reference 

dependent category. The amount of change can be significant 

or non-significant. The non-significant cases (p>0.05) in 

Tables 7, 8 and 9 are denoted by an asterisk “*”. The changes 

in LULC due to effects of increasing the driving factor by one 

unit are significant if p<0.05. In this research, LULC classes 

and soil types were categorical data while other factors were 
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continuous data. During the multinomial logistic regression 

analysis, bare land was purposively considered as the reference 

category while Nitisols (Soils8) was taken as a reference 

category for soil type classes. 

Table 7. Results of Logistic Regression (Odds ratios) for LULC in 2000. 

 

 

LULC 

 GRA WET WOD FOR SHR AGR WAT URB 

Factors 

Slope 1.890 1.236 1.768 1.549 1.742 1.767 1.595 1.438 

Elevation 3.488 1.020* 7.631 14.372 4.716 3.150 3.124 2.076 

D-Roads 1.432 1.603 2.135 1.850 2.033 1.507 1.620 1.133 

D-Rivers 1.371 1.257 1.165 1.179 1.169 1.584 1.217 1.320 

P-Density 2.008 1.819 1.950 2.044 2.105 1.883 2.825 2.209 

Annual Rain 1.388 0.428 2.671 6.302 2.398 1.581 3.734 2.238 

NDVI 2.507 2.738 4.290 1.802 3.084 2.817 6.953 1.857 

[Soils1] 0.557* 0.016 0.078 0.057 0.301* 2.375* 979.863 6.534* 

[Soils2] 0.496* 0.023 0.038 0.001 0.258* 3.605* 5620.257 4.853* 

[Soils3] 1.249* 0.010 0.255 0.002 0.877* 3.677* 6.011 7.077* 

[Soils4] 0.547* 0.019 0.107 0.077 0.459* 3.129* 1112.108 10.415 

[Soils5] 5.880* 0.022 0.383* 0.004 3.067* 10.758 1333.821 29.857 

[Soils6] 1.347* 0.026 0.059 0.004 0.311* 5.528* 102.077 27.312 

[Soils7] 2.853* 0.151* 2.069* 1.907* 3.349* 8.622 3785.201 35.868 

[Soils8](Ref) - - - - - - - - 

*p<0.05, LULC reference category is Bare land, Soil types reference category is Soils8 (Nitisols) 

Note: D-Roads = Distance from Roads-Rivers=Distance from Rivers-Density=Population Density, Soils1=Leptosols, Soil2=Fluvisols, Soil3=Cambisols, 

Soil4=Andosols, Soil5=Lixisols, Soil6=Solonetz, Soil7=Acrisols, Soil8=Nitisols 

Table 8. Results of Logistic Regression (Odds ratios) for LULC in 2006 

 

 

LULC 

 GRA WET WOD FOR SHR AGR WAT URB 

Factors 

Slope 1.064 1.217 1.069 1.002* 1.086 1.160 .467 .930 

Elevation 4.352 1.873 7.062 10.247 5.231 3.932 .485 3.926 

D-Roads 1.115 1.038 1.549 1.554 1.270 1.421 3.494 .883 

D-Rivers 1.079 0.717 0.983 0.970 1.107 0.998* .717 .958 

P-Density 0.905 0.779 0.745 0.959 0.722 0.741 1.670 1.241 

Annual Rain 0.846 0.292 1.087 1.162 0.559 0.640 1.020* 1.189 

NDVI 24.454 130.326 188.067 12.899 49.692 73.622 147.695 4.777 

[Soils1] 0.015 0.405* 0.007 0.002 0.004 0.019 .109* .051 

[Soils2] 0.016 0.590* 0.007 0.002 0.003 0.016 .147* .039 

[Soils3] 0.024 0.159 0.008 0.003 0.013 0.044 .007* .038 

[Soils4] 0.018 0.283* 0.010 0.003 0.003 0.013 .044* .067 

[Soils5] 0.053 0.144 0.027 0.014 0.012 0.029 .070* .256 

[Soils6] 0.055 0.263* 0.014 0.017 0.014 0.043 .009* .059 

[Soils7] 0.074 0.973* 0.046 0.025 0.031 0.058 .176* .176 

[Soils8](Ref) - - - - - - - - 

*p<0.05, LULC reference category is Bare land, Soil types reference category is Soils8 (Nitisols) 

Table 9. Results of Logistic Regression (Odds ratios) for LULC in 2013. 

 
 

LULC 

GRA WET WOD FOR SHR AGR WAT URB 

Factors 

Slope 1.740 1.323 1.753 1.344 1.587 1.515 2.003 1.414 

Elevation 2.720 1.344 2.540 8.310 5.020 2.204 2.326 2.265 

D-Roads 1.853 1.717 2.568 4.244 4.537 1.914 3.400 1.028* 

D-Rivers 1.498 1.532 1.162 1.425 1.197 1.418 1.116 1.308 

P-Density 1.427 1.417 1.291 1.296 2.032 1.381 2.031 1.736 

Annual Rain 2.646 1.639 4.114 11.438 4.815 4.857 8.746 3.419 

NDVI 1.256 0.551 0.394 0.625 0.486 0.525 0.416 1.085 

[Soils1] 1.444 16.007 0.085 0.027 0.149 0.273 0.109 0.368 

[Soils2] 1.171* 33.526 0.055 0.001 0.000 0.481 1.203* 0.218 

[Soils3] 6.907 57.276 0.288 0.000 0.057 0.622 0.007 2.204 

[Soils4] 4.893 35.945 0.427 0.099 0.766* 0.931* 0.601 1.396 

[Soils5] 90.169 238.227 7.007 0.090 4.736 8.116 2.363 9.137 

[Soils6] 5.440 22.756 0.244 0.010 0.012 0.605 0.008 5.163 

[Soils7] 14.156 16.364 2.338 1.206 9.620 2.224 1.675 4.875 

[Soils8](Ref) - - - - - - - - 

*p<0.05, LULC reference category is Bare land, Soil types reference category is Soils8 (Nitisols) 
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The results in Tables 7, 8 and 9 present three types of 

information. First, Odds (probability) of dependent variable 

(LULC classes) to change as a result of change in one unit of 

an independent variable. Second, possibility of change in 

space of one LULC class to another as one move spatially 

from one category to another of the same influencing factor, 

example from low elevation to high elevation, or from one 

soil type to another. 

Although the logistic regression model was set in such a 

way that LULC (dependent variable) was influenced by 

several factors, some of the factors change with time while 

others do not. For example elevation and slope do not change 

with time but do so across the landscape. Annual rainfall, 

population density and NDVI change with time; and this 

change determines LULC. The nature of land 

geomorphology (slope and elevation) acts as natural barriers 

to landscape ecosystem change by limiting at different 

degrees the movement of human activities. Steep slopes and 

high elevations, for example, favour forests, grasses but 

discourage agriculture. Hence, these two factors account for 

the existing distribution of LULC distributions on a given 

geographical location. 

3.2.1. LandUse/Land Covers Change 

General analysis of the odds ratio values shown in Tables 7, 

8 and 9 indicate that compared to other factors, elevation, 

annual rainfall, NDVI and soil types bear large values in 

almost all land use classes. The higher the odds ratio values, 

the higher the probability of that particular LULC class to 

change as a result of changing the magnitude of independent 

factor by one unit [31, 32]. The odds ratio associated with 

soil types are all less than one (OR<1) almost in all LULC 

classes except grasslands (2000&2013), wetlands (2013), 

water (2000&2013) and urban (2000&2013). This implies 

that the spatial change in soil typesalso leads to changes in 

spatial distribution of grassland, water, urban lands and 

wetlands. 

It can also be noted that even in cases where odds ratio 

values associated with soil types are statistically significant, 

the effect of the change is small (OR<1). This implies that, 

compared to bare land, chances are low for LULC to change 

on different soil types across the landscape. Interesting 

results associated with soil types can be seen on soils 5 

(Lixisols) and soil7 (Acrisols), respectively. The odds ratios 

for these soils are higher under wetlands, grasslands, 

agricultural lands, water and urban lands. These two soils are 

characterized with subsurface accumulation of low activity 

clays, whereby Lixisols have higher base saturation than 

Acrisols. They are older, well-formed and deep soils which 

favor agriculture. Conversion of grassland and wetlands to 

agriculture is a common feature in the study area (Table 5 

and 6). Therefore, these soils determine spatial distribution of 

agriculture and wetlands in the study area. Spatial change to 

other soil types leads to great LULC changes associated with 

agriculture, wetlands and grass lands. 

Odds ratio associated with slope and distance from water 

networks do not show great variations in Tables 7, 8 and 9. 

Almost all values for distance from rivers are less than 1. So 

the influences of these two independent variables are less 

discussed in this paper. A study by Cihlar et al. (2001) found 

that slope class has a strong relation with land use class. 

Lands on the steep areas are always related to land uses like 

forestry and pastures and meadows. 

The influence of each factor on LULC change and 

distribution as shown by odds ratio values in Tables 7, 8 and 

9 are further summarized in terms of the decreasing 

magnitude of odds ratio in Table 10. This summary shows the 

most affected LULC class when the selected factors 

magnitudes are changed by one unit in a particular year of 

observation. 

Table 10. Odds ratio of change of selected LULC (Decreasing in magnitude) under different factors. 

Factor 2000 2006 2013 

Elevation FOR>WOD>SHR>GRA>AGR FOR>WOD>SHR>GRA>AGR FOR>SHR>GRA>WOD>WAT 

D-Roads WOD>SHR>FOR>WAT WAT>FOR>WOD>AGR SHR>FOR>WAT>WOD 

P-Density WAT>URB>FOR>GRA WAT>URB>FOR>GRA SHR>WAT>GRA>WET>AGR 

Annual rain FOR>WAT>WOD URB>FOR>WOD FOR>WAT>AGR 

NDVI WAT>WOD>SHR>WET>GRA WOD>WAT>WET>SHR>GRA GRA>URB>FOR>WET>AGR 

Soil[5] WAT>URB>AGR>GRA>SHR URB>WET>WAT>GRA WET>GRA>URB>AGR>WOD 

Soil[7] WAT>URB>AGR>SHR>GRA WET>URB>WAT>GRA WET>GRA>SHR>URB>WOD 

 

Generally, Table 10 shows that elevation determines 

greatly the distribution of forestlands, woodlands and shrubs 

compared to the reference land category. Field observation 

shows that the higher the altitude, the more the forests and 

woodlands. It can also be note that increase of distances from 

roads also affects distribution of forests, woodlands and 

water bodies. Population density has great impacts on water 

bodies, urban lands, grasslands and wetlands. Changes in 

forest lands, woodlands and water resources are also 

controlled by the amount of annual precipitation. Changes in 

annual precipitation affect much these types of LULC classes. 

3.2.2. Land use/land Covers Distribution 

Landscapes in Usangu watershed are covered by wide 

variations of biological as well as physical features. There is 

a distinct change in vegetation from the highlands to the 

lowlands. The existence of such land use/cover types across 

the watershed landscape is a function of many factors 

ranging from demographic, climatic, edaphic and social-

economic aspects. These factors also influence the changes in 

LULC which take place in a catchment [15, 29]. This study 

has shown that there is close relationship between the 
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distribution and existence of a given LULC with annual 

rainfall, elevation and soil types. However, the existence and 

distribution of LULC are mainly influenced by 

geomorphologic/relief, climatic or edaphic factors. The 

influence of elevation on LULC is demonstrated in Fig. 2. 

 

Fig. 2. LULC distribution along elevation grades. 

Agriculture, which is the main economic activity in the 

Usangu plains, is dominant in low elevation areas (1020-

1100m amsl). By 2013, itoccupied about 40.7% of all land 

area, and its size decreases as the elevation increases. At 

2000-2500m amsl, it occupies only 9.5% of all the land cover. 

This pattern of distribution can be attributed to elevation 

barrier. As elevation increases, accessibility to the area and 

agricultural activities become difficult. Similarly, 

Fig.3depicts reduced human settlementswith increase in 

altitude. Large population is found in elevations from 1100-

2000m amsl, then decreases drastically to areas located at 

2000-2500m amsl. Low population in high altitude areas 

gives a room for existance of forests and woolands. 

Agricultural land and urban areas are also distributed mainly 

in these areas. Agricultural activities are dominant in 

wetlands which are located in low altitudes (less than 1100 m 

amsl). 

 

Fig. 3.Changes in population densitywith altitude in Usangu Catchment. 

Distribution of LULC based on elevation trend has been 

reported in previous studies and resulted almost the same as 

the one reported in this study. Remnant montane humid 

forestare found above 2,000m amsl while Miombo woodland 

dominates the elevations between 2,000m and 1,100m amsl 

[18]. Areas below 1,100m amsl are dominated by the fans 

and Usangu wetlands. The fans are fertile and consequently 

many agricultural activities are concentrated here. 
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Fig. 4. LULC distribution on slope grades (bar chart) and total LULC in each slope grade (pie chart). 

As discussed earlier, terrain in landscapes determines 

human activities. Evidence from field observation shows 

reduced human activities in terms of tree cutting and charcoal 

burning with increase in altitude. Conversely, flatness of the 

area encourages the type of economic activities that take 

place in Usangu catchment. For this reason, large part of the 

flat areas (0-2% slope)is occupied by different LULC types 

as indicated in Fig 4. Similarly, a pie chart inserted in Fig.4 

shows that about 54% ofthe area covered by Usangu 

catchment lies in the slope measuring 0-2%. Steep slopes 

hinders infrustuctural development like roads, irrigation 

schemes and houses for settlements. This explains why urban 

areas (65.0%) lie between 0-2% slope. Steep areas (slope of 

10-15%,15-25and >25%) are dominated by trees and shrubs, 

but in the decreasing magnitude. Moderate slope (10-15%) to 

steep area (15-25% slope) can be tolerated by big trees, but 

very steep slopes (25% slope) coupled with shallow soils 

discouaragesexistance of big trees as there may be frequent 

land slides and soil erosion [2]. 

Distance from roads is another important predictor of 

distribution of certain LULC types; of special interests in this 

study are urban and agricultural lands. Current lands 

occupied by these LULC classes are a result of converting 

other land covers like forests, shrubs or grass lands in support 

of economic activities such as transportation and irrigation. 

Major irrigation schemes in the study area (e.g. Kapunga, 

Igomelo, Mbarali Estates, Madibira and Ihahi) are close to 

road networks. In general, roads attract human settlements. 

Fig.5 shows that about 95.3% of urban land (settlements) is 

found within 0-10 kilometers from road networks, while 

2.3% and 0.9% of urban lands are found at 10-20 km and 30-

40 km, respectively.On the other hand, agricultural lands 

(48.6%) are distributed within 0-10km from roads. This 

proportion decreases slowly as distance from roads reaches to 

as far as 40-50kms (6.3%). 

 

Fig. 5. LULC distribution with respect to distance from the roads network in Usangu catchment. 

As shown earlier in Tables 7, 8 and 9 and summary of 

results in Table 10, amount of annual rainfall distribution 

determines distribution of certain LULC classes. Information 

in Fig.6 gives further details of the influence of rainfall on 
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LULC distribution. Here, forest land, woodlands, water 

bodies and for small extent agriculture, their distribution is 

clearly seen as a function of amount of annual 

rainfall.Mountain areas in Usangu catchment (Kipendege and 

Poroto Mountains) receive higher annual rainfall compared 

with the low lands. Previous study [33] in Usangu watershed 

found out that land use/cover change has relationship with 

rainfall amounts, whereby land covers do fluctuate from year 

to year depending on the differences in rainfall between years. 

Inverse relationship is seen on agricultural lands and annual 

rainfall. 

 

Fig. 6. LULC percentages as distributed in different annual rainfall amounts. 

The distribution of agricultural lands is higher in low 

annual rainfall areas and low in higher annual rainfall areas. 

This is due to the fact that excessive rains fall on the 

mountain where it is unsuitable for agriculture. On the 

contrary, the rain water recharges groundwater and some 

flows as rivers to low elevation areas where soils are suitable 

for farming. 

4. Conclusion 

This study has identified LULC changes which have taken 

place in Usangu catchment from 2000 to 2013 and 

theirrelated factors that have contributed to these changes. 

Although LULC changes can be attributed to natural factors, 

findings of this study suggest that anthropogenic changes had 

strong influence on LULC changes and distribution. We note 

that grasslands, shrubs and wetlands are being converted into 

agricultural lands and settlements/urban lands. The degree of 

influence on LULC changes and LULC distribution varies 

with specific factors. While some factors have more 

influence on land use change (annual rainfall, population 

density and distance from road networks), others (terrain and 

edaphic factors) are important determinants of LULC 

distribution. This study also shows that ingeniously 

integration of remote sensing, GIS application combined with 

multisource spatial data and analysis give great possibility of 

quantifying and explaining the LULC changes and LULC 

distribution in terms of time and space. The approach of 

identification, testing and analysis of influence of each factor 

that determine the existence of a certain LULC at a certain 

location and at a given time provides foundation for 

advanced analysis like Markov chain and water balance 

studies of the catchment. 

 

References 

[1] Koomen, E. and J. Stillwell, Modelling land-use change. 2007: 
Springer. 

[2] Hyandye, C. and I. Katega, Natural Barriers to Eco-
environmental Vulnerability in a Complex Ecosystem. Journal 
of Environmental Science and Engineering, 2010. 4(9): p. 32-39. 

[3] Antrop, M., Landscape change and the urbanization process in 
Europe. Landscape and urban planning, 2004. 67(1): p. 9-26. 

[4] Cihlar, J. and L.J. Jansen, From land cover to land use: a 
methodology for efficient land use mapping over large areas. 
The Professional Geographer, 2001. 53(2): p. 275-289. 

[5] Peña, J., et al., Driving forces of land-use change in a cultural 
landscape of Spain, in Modelling land-use change. 2007, 
Springer. p. 97-116. 

[6] Bürgi, M., A.M. Hersperger, and N. Schneeberger, Driving 
forces of landscape change—current and new directions. 
Landscape Ecology, 2004. 19(8): p. 857-868. 

[7] Wood, R. and J. Handley, Landscape dynamics and the 
management of change. Landscape Research, 2001. 26(1): p. 
45-54. 

[8] Verburg, P.H., et al., Determinants of land-use change patterns 
in the Netherlands. Environment and Planning B, 2004. 31(1): 
p. 125-150. 

[9] Giri, C., P. Defourny, and S. Shrestha, Land cover 
characterization and mapping of continental Southeast Asia 
using multi-resolution satellite sensor data. International 
Journal of Remote Sensing, 2003. 24(21): p. 4181-4196. 

[10] Lambin, E.F., H.J. Geist, and E. Lepers, Dynamics of land-use 
and land-cover change in tropical regions. Annual review of 
environment and resources, 2003. 28(1): p. 205-241. 



16 Canute Hyandye, et al.:  GIS and Logit Regression Model Applications in Land Use/Land Cover Change and  

Distribution in Usangu Catchment 

[11] Jansen, L., G. Carrai, and M. Petri, Land-use change at 
cadastral parcel level in Albania, in Modelling Land-Use 
Change. 2007, Springer. p. 25-44. 

[12] Kikula, I., Charnley, S., Yanda, P., Ecological changes in the 
Usangu Plains and their implications on the downstream flow 
of the Great Ruaha river in Tanzania. Research Report No.99. 
1996, Institute of Resource Assessment: Dar es Salaam. 

[13] Kashaigili, J.J., et al., Dynamics of Usangu plains wetlands: 
Use of remote sensing and GIS as management decision tools. 
Physics and Chemistry of the Earth, Parts A/B/C, 2006. 31(15): 
p. 967-975. 

[14] Kashaigili, J.J., Impacts of land-use and land-cover changes 
on flow regimes of the Usangu wetland and the Great Ruaha 
River, Tanzania. Physics and Chemistry of the Earth, Parts 
A/B/C, 2008. 33(8–13): p. 640-647. 

[15] Behera, D., et al., Modelling and analyzing the watershed 
dynamics using Cellular Automata (CA)–Markov model–A 
geo-information based approach. Journal of earth system 
science, 2012. 121(4): p. 1011-1024. 

[16] Weng, Q., Land use change analysis in the Zhujiang Delta of 
China using satellite remote sensing, GIS and stochastic 
modelling. Journal of environmental management, 2002. 64(3): 
p. 273-284. 

[17] Shu, Y. and K.G. Villholth, Analysis of Flow and Baseflow 
Trends in the Usangu Catchment, Tanzania. IWMI, 
International Water Management Institute, Pretoria, South 
Africa. 
http://www.ru.ac.za/static/institutes/iwr/SANCIAHS/2012/doc
uments/047_Shu.pdf 2012. 

[18] SMUWC, Final Report, Water Resources. Supporting report 7, 
Directorate of Water Resources, Dar es salaam, Tanzania. 
2001a. p. 81. 

[19] Kadigi, R.M., et al., Water for irrigation or hydropower 
generation?—Complex questions regarding water allocation in 
Tanzania. Agricultural water management, 2008. 95(8): p. 
984-992. 

[20] Geosystems, L., ERDAS imagine. 2011: Atlanta,Georgia. 

[21] ESRI, ArcGIS Desktop 10.1. 2011, Environmental Systems 
Research Institute: Redlands, CA. 

[22] Anderson, J.R., et al., A land use and land cover classification 
system for use with remote sensor data: US Geological Survey 
Professional Paper 964,28.Washington,1976. 

[23] Kiptala, J., et al., Land use and land cover classification using 
phenological variability from MODIS vegetation in the Upper 
Pangani River Basin, Eastern Africa. Physics and Chemistry 
of the Earth, Parts A/B/C, 2013. 66: p. 112-122. 

[24] Lillesand, T.M. and R.W. Kiefer, Remote sensing and image 
interpretation. 1994, Wiley, New York. 

[25] Jensen, J.R., Introductory Digital Image Processing: A Remote 
Sensing Perspective. 2007: Prentice Hall. 

[26] Naidoo, R. and K. Hill, Emergence of indigenous vegetation 
classifications through integration of traditional ecological 
knowledge and remote sensing analyses. Environmental 
Management, 2006. 38(3): p. 377-387. 

[27] Molnár, Z., et al., Distribution of the (semi-) natural habitats 
in Hungary I. Marshes and grasslands. Acta Botanica 
Hungarica, 2008. 50: p. 59-105. 

[28] Labs, C., IDRISI Selva v17. GIS and Image Processing 
Software 2012. 

[29] Abdel-Kader, F.H., Digital soil mapping at pilot sites in the 
northwest coast of Egypt: A multinomial logistic regression 
approach. The Egyptian Journal of Remote Sensing and Space 
Science, 2011. 14(1): p. 29-40. 

[30] Tabachnick, B. and L. Fidell, Multivariate analysis of variance 
and covariance. Using multivariate statistics, 2007. 3: p. 402-
407. 

[31] Westergren, A., et al., Eating difficulties, need for assisted 
eating, nutritional status and pressure ulcers in patients 
admitted for stroke rehabilitation. Journal of clinical nursing, 
2001. 10(2): p. 257-269. 

[32] Hu, Z. and C. Lo, Modeling urban growth in Atlanta using 
logistic regression. Computers, Environment and Urban 
Systems, 2007. 31(6): p. 667-688. 

[33] Kashaigili, J.J., et al. Integrated hydrological modelling of 
wetlands for environmental management: the case of the 
Usangu wetlands in the Great Ruaha catchment. in 
RIPARWIN Seminar Presentation, Sokoine Univ. of Agric. 
Morogoro, Tanzania. 2005. 

 

View publication stats

https://www.researchgate.net/publication/279271729



